Binomial Theorem (Part 2)

These notes are intended as a summary of section 8.6 (p. 738 - 742) in your workbook. You should also read the section for more complete explanations and additional examples.

Method 2 - Binomial Theorem

The coefficients of a binomial expansion are the combinations of the power beginning with ${ }_{n} C_{0}$ and ending at ${ }_{n} C_{n}$.

$$
(x+y)^{n}={ }_{n} C_{0} x^{n}+{ }_{n} C_{1} x^{n-1} y+{ }_{n} C_{2} x^{n-2} y^{2}+\ldots+{ }_{n} C_{n-2} x^{2} y^{n-2}+{ }_{n} C_{n-1} x y^{n-1}+{ }_{n} C_{n} y^{n}
$$

Important Observations:

1. In any term of the expansion, the exponent of the second term (y) is the same as the number of objects being selected in the combination.

$$
{ }_{n} C_{r} x^{n-r} y^{r}
$$

2. The exponent of the second term (y) in any term of the expansion is one less than the term position.

$$
t_{k+1}={ }_{n} C_{k} x^{n-k} y^{k}
$$

Example (not in workbook)

What is the third term in the expansion of $(x+y)^{8}$?

Example 3 (sidebar p. 742)

Determine the $9^{\text {th }}$ term in the expansion of $(x-2)^{10}$.

Example (not in workbook)

Write the expansion of $(x+y)^{7}$ using the binomial theorem.

Example (not in workbook)

Find the term containing x^{9} in the expansion of $\left(3 x^{2}-\frac{2}{x}\right)^{9}$.

Example (not in workbook)

Find the constant term in the expansion of $\left(5 x^{3}-\frac{2}{x}\right)^{12}$.

Homework: \#5, 7, 9, 11 in the section 8.6 exercises (p. 743 - 749). Answers on p. 750.

